Motion planning is critical to realize the autonomous operation of mobile robots. As the complexity and randomness of robot application scenarios increase, the planning capability of the classical hierarchical motion planners is challenged. With the development of machine learning, deep reinforcement learning (DRL)-based motion planner has gradually become a research hotspot due to its several advantageous features. DRL-based motion planner is model-free and does not rely on the prior structured map. Most importantly, DRL-based motion planner achieves the unification of the global planner and the local planner. In this paper, we provide a systematic review of various motion planning methods. First, we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features. Subsequently, we concentrate on summarizing RL-based motion planning approaches, including motion planners combined with RL improvements, map-free RL-based motion planners, and multi-robot cooperative planning methods. Last but not least, we analyze the urgent challenges faced by these mainstream RL-based motion planners in detail, review some state-of-the-art works for these issues, and propose suggestions for future research.
翻译:运动规划对于实现移动机器人的自主操作至关重要。随着机器人应用设想方案的复杂性和随机性增加,古典等级运动规划者的规划能力受到挑战。随着机器学习的发展,深强化学习(DRL)基于运动规划者由于其若干优点而逐渐成为一个研究热点。基于DRL的运动规划者是无型的,并不依赖先前结构化的地图。最重要的是,基于DRL的运动规划者实现了全球规划者和地方规划者的统一。在本文件中,我们系统地审查了各种运动规划方法。首先,我们总结了典型运动规划结构每个子模块的代表和最新工艺作品,并分析了其绩效特征。随后,我们集中总结基于RL的运动规划方法,包括运动规划者与RL的改进、无地图的RL运动规划者以及多机器人合作规划方法相结合。最后但并非最不重要的一点是,我们详细分析了这些主流的RL运动规划者所面临的紧迫挑战。我们详细分析了这些主流运动规划者所面临的紧迫挑战,审视了典型运动规划结构结构结构结构中的一些州级工作,并分析了这些问题的未来研究建议。