Accurate and early prediction of a disease allows to plan and improve a patient's quality of future life. During pandemic situations, the medical decision becomes a speed challenge in which physicians have to act fast to diagnose and predict the risk of the severity of the disease, moreover this is also of high priority for neurodegenerative diseases like Parkinson's disease. Machine Learning (ML) models with Features Selection (FS) techniques can be applied to help physicians to quickly diagnose a disease. FS optimally subset features that improve a model performance and help reduce the number of needed tests for a patient and hence speeding up the diagnosis. This study shows the result of three Feature Selection (FS) techniques pre-applied to a classifier algorithm, Logistic Regression, on non-invasive test results data. The three FS are Analysis of Variance (ANOVA) as filter based method, Least Absolute Shrinkage and Selection Operator (LASSO) as embedded method and Sequential Feature Selection (SFS) as wrapper method. The outcome shows that FS technique can help to build an efficient and effective classifier, hence improving the performance of the classifier while reducing the computation time.


翻译:对疾病的准确和早期预测有助于规划和改善患者未来生活质量。在大流行病情况下,医疗决定成为一项快速挑战,医生必须迅速采取行动,诊断和预测疾病严重性的风险,这也是帕金森病等神经退化性疾病的高度优先事项。具有特征选择(FS)技术的机器学习模型可以用于帮助医生快速诊断疾病。FS最优化的子集功能,可以改进模型性能,帮助减少患者所需的检测数量,从而加快诊断速度。这项研究显示三种特征选择技术(FS)预先应用到分类算法、物流倒退、非侵入性测试结果数据的结果。三种FS是作为过滤法分析差异(ANOVA),最小绝对缩小和选择操作员(LASSO)作为嵌入方法和序列性选择方法,作为包装方法。结果显示FS技术可以帮助构建一个高效和高效的分类,从而改进分类方法的性能。

0
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员