We consider the cyclotomic identity testing (CIT) problem: given a polynomial $f(x_1,\ldots,x_k)$, decide whether $f(\zeta_n^{e_1},\ldots,\zeta_n^{e_k})$ is zero, where $\zeta_n = e^{2\pi i/n}$ is a primitive complex $n$-th root of unity and $e_1,\ldots,e_k$ are integers, represented in binary. When $f$ is given by an algebraic circuit, we give a randomized polynomial-time algorithm for CIT assuming the generalised Riemann hypothesis (GRH), and show that the problem is in coNP unconditionally. When $f$ is given by a circuit of polynomially bounded degree, we give a randomized NC algorithm. In case $f$ is a linear form we show that the problem lies in NC. Towards understanding when CIT can be solved in deterministic polynomial-time, we consider so-called diagonal depth-3 circuits, i.e., polynomials $f=\sum_{i=1}^m g_i^{d_i}$, where $g_i$ is a linear form and $d_i$ a positive integer given in unary. We observe that a polynomial-time algorithm for CIT on this class would yield a sub-exponential-time algorithm for polynomial identity testing. However, assuming GRH, we show that if the linear forms~$g_i$ are all identical then CIT can be solved in polynomial time. Finally, we use our results to give a new proof that equality of compressed strings, i.e., strings presented using context-free grammars, can be decided in randomized NC.


翻译:我们考虑环球身份测试( CIT) 问题 : 鉴于一个多数值 $f( x_ 1,\ ldots,x_k) 美元, 确定美元是否为零, 美元是否为零, 美元是否为零, 美元= e% 2\pi i/n}, 美元= e% 2\ pi/ k} 是一个原始复杂的 美元统一根基和 $_ 1, 美元=lfots, e_k$ 全部为整数, 以二进制表示。 当 美元由 algebraic 电路提供时, 我们给 CIT 随机化的多数值算算法值值值值值值为 1, 假设问题在 Cemann 假设值 (GRIH) 中是无条件的。 当美元由聚集度的电解路由电流线路流提供时, 我们给出了 NC. $ is a centif is a we deal for sweal ex.

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员