We study the problem of testing triangle freeness in the general graph model. This problem was first studied in the general graph model by Alon et al. (SIAM J. Discret. Math. 2008) who provided both lower bounds and upper bounds that depend on the number of vertices and the average degree of the graph. Their bounds are tight only when $d_{\rm max} = O(d)$ and $\bar{d} \leq \sqrt{n}$ or when $\bar{d} = \Theta(1)$, where $d_{\rm max}$ denotes the maximum degree and $\bar{d}$ denotes the average degree of the graph. In this paper we provide bounds that depend on the arboricity of the graph and the average degree. As in Alon et al., the parameters of our tester is the number of vertices, $n$, the number of edges, $m$, and the proximity parameter $\epsilon$ (the arboricity of the graph is not a parameter of the algorithm). The query complexity of our tester is $\tilde{O}(\Gamma/\bar{d} + \Gamma)\cdot poly(1/\epsilon)$ on expectation, where $\Gamma$ denotes the arboricity of the input graph (we use $\tilde{O}(\cdot)$ to suppress $O(\log \log n)$ factors). We show that for graphs with arboricity $O(\sqrt{n})$ this upper bound is tight in the following sense. For any $\Gamma \in [s]$ where $s= \Theta(\sqrt{n})$ there exists a family of graphs with arboricity $\Gamma$ and average degree $\bar{d}$ such that $\Omega(\Gamma/\bar{d} + \Gamma)$ queries are required for testing triangle freeness on this family of graphs. Moreover, this lower bound holds for any such $\Gamma$ and for a large range of feasible average degrees.
翻译:我们研究在普通图形模型中测试三角自由度的问题。 这个问题首先由 Alon 等人( SIAM J. Discret. Math. 2008) 在普通图形模型中研究, 前者提供了取决于图顶数和平均水平的下限和上界。 只有当 $@ rm 最大 = O( d) 和 $\ bar{ leq}\ leq 美元, 或当 $\bar{ d} = Theta(1)$, 美元=rm; 美元 最大 美元 和 美元 美元 。 本文中我们提供的边框取决于图的偏差度和平均程度。 与 Alon 和 Al al. 相比, 我们测试的参数是: odice、 美元、 边缘、 美元 美元 美元 和 接近的 美元 。