The Argo data is a modern oceanography dataset that provides unprecedented global coverage of temperature and salinity measurements in the upper 2,000 meters of depth of the ocean. We study the Argo data from the perspective of functional data analysis (FDA). We develop spatio-temporal functional kriging methodology for mean and covariance estimation to predict temperature and salinity at a fixed location as a smooth function of depth. By combining tools from FDA and spatial statistics, including smoothing splines, local regression, and multivariate spatial modeling and prediction, our approach provides advantages over current methodology that consider pointwise estimation at fixed depths. Our approach naturally leverages the irregularly-sampled data in space, time, and depth to fit a space-time functional model for temperature and salinity. The developed framework provides new tools to address fundamental scientific problems involving the entire upper water column of the oceans such as the estimation of ocean heat content, stratification, and thermohaline oscillation. For example, we show that our functional approach yields more accurate ocean heat content estimates than ones based on discrete integral approximations in pressure. Further, using the derivative function estimates, we obtain a new product of a global map of the mixed layer depth, a key component in the study of heat absorption and nutrient circulation in the oceans. The derivative estimates also reveal evidence for density inversions in areas distinguished by mixing of particularly different water masses.
翻译:Argo数据是现代海洋学数据集,在海洋的高度2 000米深处提供前所未有的温度和盐度测量全球覆盖范围。我们从功能性数据分析的角度研究Argo数据。我们开发了中常和共变估算法,以预测固定地点的温度和盐度,作为平稳的深度功能。通过将林业发展局的工具与空间统计,包括平滑的样条、地方回归和多变空间建模和预测,我们的方法比考虑定深点估计的现行方法提供了优势。我们的方法自然地利用空间、时间和深度中不定期采集的数据,以适应温度和盐度的时空功能模型。我们开发的框架提供了新工具,以解决涉及整个海洋上层水柱的基本科学问题,如海洋热含量估计、分层和热层振荡等。例如,我们的方法提供了比基于固定深度离散整体压力的海洋热量估算法更准确的海洋热量估计值。此外,我们利用离心性深度数据采集的频率模型,还利用离心性深度模型的深度数据,通过精度数据流的深度估算,并用精度模型的深度分析,我们获得了一种新的海洋流流流流数据。