In this paper, we introduce a hierarchical extension of the stochastic blockmodel to identify multilevel community structures in networks. We also present a Markov chain Monte Carlo (MCMC) and a variational Bayes algorithm to fit the model and obtain approximate posterior inference. Through simulated and real datasets, we demonstrate that the model successfully identifies communities and supercommunities when they exist in the data. Additionally, we observe that the model returns a single supercommunity when there is no evidence of multilevel community structure. As expected in the case of the single-level stochastic blockmodel, we observe that the MCMC algorithm consistently outperforms its variational Bayes counterpart. Therefore, we recommend using MCMC whenever the network size allows for computational feasibility.
翻译:暂无翻译