Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting triplets of aspect terms, their associated sentiments, and the opinion terms that provide evidence for the expressed sentiments. Previous approaches to ASTE usually simultaneously extract all three components or first identify the aspect and opinion terms, then pair them up to predict their sentiment polarities. In this work, we present a novel paradigm, ASTE-RL, by regarding the aspect and opinion terms as arguments of the expressed sentiment in a hierarchical reinforcement learning (RL) framework. We first focus on sentiments expressed in a sentence, then identify the target aspect and opinion terms for that sentiment. This takes into account the mutual interactions among the triplet's components while improving exploration and sample efficiency. Furthermore, this hierarchical RLsetup enables us to deal with multiple and overlapping triplets. In our experiments, we evaluate our model on existing datasets from laptop and restaurant domains and show that it achieves state-of-the-art performance. The implementation of this work is publicly available at https://github.com/declare-lab/ASTE-RL.


翻译:Aspect Sentiment Triplet Expliton (ASTE) 的任务是提取三重元素、其相关情感和为表达情感提供证据的意见术语。 ASTE 以往的方法通常同时提取所有三个组成部分或首先确定其方面和观点术语,然后对之进行配对,以预测其情绪极化。 在这项工作中,我们提出了一个新颖的范式,ASTE-RL, 将其方面和观点术语作为在等级强化学习(RL)框架中表达的情绪的论据。 我们首先侧重于在句子中表达的情绪,然后确定该情绪的目标方面和观点术语。 这考虑到三重元素之间的相互作用,同时提高勘探和取样效率。 此外,这一等级的RLsetup使我们能够处理多重和重叠的三重元素。 在我们的实验中,我们评估了我们现有膝上型和餐厅区数据集的模型,并显示它达到了状态- 艺术性能。 这项工作的实施在https://github.com/declare-lab/ ASTE-RL。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Aspect-Opinion对抽取
深度学习自然语言处理
9+阅读 · 2020年8月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
25+阅读 · 2018年1月24日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Aspect-Opinion对抽取
深度学习自然语言处理
9+阅读 · 2020年8月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员