Ensembles of neural networks achieve superior performance compared to stand-alone networks in terms of accuracy, uncertainty calibration and robustness to dataset shift. \emph{Deep ensembles}, a state-of-the-art method for uncertainty estimation, only ensemble random initializations of a \emph{fixed} architecture. Instead, we propose two methods for automatically constructing ensembles with \emph{varying} architectures, which implicitly trade-off individual architectures' strengths against the ensemble's diversity and exploit architectural variation as a source of diversity. On a variety of classification tasks and modern architecture search spaces, we show that the resulting ensembles outperform deep ensembles not only in terms of accuracy but also uncertainty calibration and robustness to dataset shift. Our further analysis and ablation studies provide evidence of higher ensemble diversity due to architectural variation, resulting in ensembles that can outperform deep ensembles, even when having weaker average base learners.
翻译:与独立网络相比,神经网络组合在精确度、不确定度校准度和对数据集转换的坚固度方面达到优异性能。 \ emph{ deep ensembles}, 这是一种最先进的不确定性估算方法, 仅是混合随机随机初始化 。 相反, 我们提出了两种方法, 用于自动构建与 emph{ fixed} 建筑的组合, 这种方法隐含了个体结构相对于共性多样性的优势, 并且将建筑变异作为多样性的来源。 在各种分类任务和现代建筑搜索空间上, 我们显示, 由此产生的组合不仅在准确性方面, 而且在不确定性校准和数据置置变的稳健性方面, 超越了深度的组合。 我们的进一步分析和膨胀研究提供了由于建筑变异而产生的高共性多样性的证据, 其结果是, 组合可以超越深层的组合, 甚至当有较弱的普通的学习者时。