A plethora of prediction models of SARS-CoV-2 pandemic were proposed in the past. Prediction performances not only depend on the structure and features of the model, but also on its parametrization. Official databases are often biased due to lag in reporting of cases, changing testing policy or incompleteness of data. Moreover, model parametrization is time-dependent e.g. due to changing age-structures, new emerging virus variants, non-pharmaceutical interventions and ongoing vaccination programs. To cover these aspects, we develop a principled approach to parametrize SIR-type epidemiologic models of different complexities by embedding the model structure as a hidden layer into a general Input-Output Non-Linear Dynamical System (IO-NLDS). Non-explicitly modelled impacts on the system are imposed as inputs of the system. Observable data are coupled to hidden states of the model by appropriate data models considering possible biases of the data. We estimate model parameters including their time-dependence by a Bayesian knowledge synthesis process considering parameter ranges derived from external studies as prior information. We applied this approach on a SIR-type model and data of Germany and Saxony demonstrating good prediction performances. By our approach, we can estimate and compare for example the relative effectiveness of non-pharmaceutical interventions and can provide scenarios of the future course of the epidemic under specified conditions. Our method of parameter estimation can be translated to other data sets, i.e. other countries and other SIR-type models even for other disease contexts.
翻译:过去曾提出过许多SARS-COV-2大流行的预测模型。预测性绩效不仅取决于模型的结构和特点,而且取决于其平衡化。官方数据库往往由于案例报告滞后、测试政策变化或数据不完整而偏差。此外,由于年龄结构变化、新的病毒变异、非药物干预和正在进行的疫苗接种方案等原因,模型的平衡取决于时间。为了涵盖这些方面,我们制定了一种原则性方法,通过将模型结构作为隐藏层嵌入一般输入-输出非激光动态系统(IO-NLDS),使模型的平衡性SRS-COV-2大流行性预测模型具有偏差性。此外,由于系统的投入,对系统的非明显模型化影响是强制性的。可观察性数据与模型的隐蔽状态相结合,考虑到数据可能存在的偏差。我们估计模型参数,包括由巴伊西亚知识综合进程确定的不同复杂性,考虑从外部研究中得出的参数范围,作为以前的信息,我们将这种翻译性结构作为一般数据预测方法,我们也可以在SSRARA模型下,用其他模型来比较其他方法。我们为SMA的模型和SRO方法。我们对SRA的模型的比较其他方法,我们可以提供其他方法。