Although augmentations (e.g., perturbation of graph edges, image crops) boost the efficiency of Contrastive Learning (CL), feature level augmentation is another plausible, complementary yet not well researched strategy. Thus, we present a novel spectral feature argumentation for contrastive learning on graphs (and images). To this end, for each data view, we estimate a low-rank approximation per feature map and subtract that approximation from the map to obtain its complement. This is achieved by the proposed herein incomplete power iteration, a non-standard power iteration regime which enjoys two valuable byproducts (under mere one or two iterations): (i) it partially balances spectrum of the feature map, and (ii) it injects the noise into rebalanced singular values of the feature map (spectral augmentation). For two views, we align these rebalanced feature maps as such an improved alignment step can focus more on less dominant singular values of matrices of both views, whereas the spectral augmentation does not affect the spectral angle alignment (singular vectors are not perturbed). We derive the analytical form for: (i) the incomplete power iteration to capture its spectrum-balancing effect, and (ii) the variance of singular values augmented implicitly by the noise. We also show that the spectral augmentation improves the generalization bound. Experiments on graph/image datasets show that our spectral feature augmentation outperforms baselines, and is complementary with other augmentation strategies and compatible with various contrastive losses.
翻译:虽然放大(例如,图形边缘、图像作物的扰动)提高了对比性学习(CL)的效率,但地平面增强是另一个合理、互补但并非很好的研究策略。因此,我们为图表(和图像)的对比性学习提出了一个新的光谱特征论证。为此,我们为每个数据视图估计了每个特征地图的低端近似值,并从地图中减去了近近近值以获得其补充。这是通过此处提议的不完全的电源迭接率、非标准频谱迭代制度实现的,这种制度享有两种有价值的副产品(仅以一或两迭代为下):(一)它部分平衡了特征地图的频谱范围,而(二)它将噪音注入了特征地图(光谱增强)的重新平衡奇特值。对于两种观点,我们将这些重新平衡的地貌地图调整为这样的改进的调整步骤可以更多地侧重于两种观点的基矩阵的不那么主要单异值,而光谱增强不会影响光谱角度角度的对齐度角度的对齐度调整(星平面矢矢矢量矢)我们从分析形式上得出了以下的分析形式:(二),即:(二)比度变整整度变变的平面的平面的平面的平面的平比值,还显示的比度值显示显示的平面的平面的比度值将显示的比值将显示的比值将显示整个光平面的光平面的比值将显示的比值将显示的比。