Knowledge graph (KG) question generation (QG) aims to generate natural language questions from KGs and target answers. Previous works mostly focus on a simple setting which is to generate questions from a single KG triple. In this work, we focus on a more realistic setting where we aim to generate questions from a KG subgraph and target answers. In addition, most of previous works built on either RNN-based or Transformer based models to encode a linearized KG sugraph, which totally discards the explicit structure information of a KG subgraph. To address this issue, we propose to apply a bidirectional Graph2Seq model to encode the KG subgraph. Furthermore, we enhance our RNN decoder with node-level copying mechanism to allow directly copying node attributes from the KG subgraph to the output question. Both automatic and human evaluation results demonstrate that our model achieves new state-of-the-art scores, outperforming existing methods by a significant margin on two QG benchmarks. Experimental results also show that our QG model can consistently benefit the Question Answering (QA) task as a mean of data augmentation.


翻译:知识图谱问答生成旨在从知识图谱和目标答案中生成自然语言问题。之前的工作大多集中于简单的情景,即从单个知识图谱三元组生成问题。本工作着眼于更现实的情景,即从知识图谱子图和目标答案生成问题。此外,之前的大多数工作都是基于基于RNN或Transformer的模型对线性化的知识图谱子图进行编码,这完全丢弃了知识图谱子图的显式结构信息。为了解决这个问题,我们提出了一个双向Graph2Seq模型来编码知识图谱子图。此外,我们通过节点级别的复制机制增强了RNN解码器,允许直接从知识图谱子图将节点属性复制到输出问题中。自动评估和人工评估结果均表明,我们的模型实现了新的最高分数,在两个问答生成基准测试中都比现有方法表现更好。实验结果还表明,我们的问答生成模型作为数据增强的一种手段可以持续地使问答任务受益。

0
下载
关闭预览

相关内容

专知会员服务
68+阅读 · 2021年4月27日
近期必读的六篇 EMNLP 2020【知识图谱】相关论文和代码
专知会员服务
41+阅读 · 2020年11月10日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
一文带你浏览Graph Transformers
图与推荐
2+阅读 · 2022年7月14日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
论文浅尝 | 利用问题生成提升知识图谱问答
开放知识图谱
20+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员