This paper tackles the efficiency and stability issues in learning from observations (LfO). We commence by investigating how reward functions and policies generalize in LfO. Subsequently, the built-in reinforcement learning (RL) approach in generative adversarial imitation from observation (GAIfO) is replaced with distributional soft actor-critic (DSAC). This change results in a novel algorithm called Mimicking Observations through Distributional Update Learning with adequate Exploration (MODULE), which combines soft actor-critic's superior efficiency with distributional RL's robust stability.
翻译:暂无翻译