Multi-relational databases are the basis of most consolidated data collections in science and industry today. Most learning and mining algorithms, however, require data to be represented in a propositional form. While there is a variety of specialized machine learning algorithms that can operate directly on multi-relational data sets, propositionalization algorithms transform multi-relational databases into propositional data sets, thereby allowing the application of traditional machine learning and data mining algorithms without their modification. One prominent propositionalization algorithm is RELAGGS by Krogel and Wrobel, which transforms the data by nested aggregations. We propose a new neural network based algorithm in the spirit of RELAGGS that employs trainable composite aggregate functions instead of the static aggregate functions used in the original approach. In this way, we can jointly train the propositionalization with the prediction model, or, alternatively, use the learned aggegrations as embeddings in other algorithms. We demonstrate the increased predictive performance by comparing N-RELAGGS with RELAGGS and multiple other state-of-the-art algorithms.


翻译:多种关系数据库是当今科学和工业中大多数综合数据收集的基础。然而,大多数学习和采矿算法都要求以假设形式代表数据。虽然有各种专门的机器学习算法可以直接在多关系数据集上运作,但提议式算法可以将多关系数据库转化为假设式数据集,从而允许应用传统的机器学习和数据挖掘算法而无需修改。一个突出的建议性算法是Krogel和Wrobel的RELAGGGS,它通过嵌巢式集成转换数据。我们提议一种新的基于神经网络算法,以REALGGSS的精神为基础,使用可训练的综合综合功能,而不是最初方法中使用的静态综合功能。这样,我们可以联合用预测模型来培训提议,或者将所学的分类作为嵌入其他算法的嵌入。我们通过将N-REGGGS与RELAGGGS和多种其他状态的算法进行比较,来证明预测性提高的性能。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
27+阅读 · 2020年6月19日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员