In the present work, we first introduce a general framework for modelling complex multiscale fluids and then focus on the derivation and analysis of a new hybrid continuum-kinetic model. In particular, we combine conservation of mass and momentum for an isentropic macroscopic model with a kinetic representation of the microscopic behaviour. After introducing a small scale of interest, we compute the complex stress tensor by means of Irving-Kirkwood formula. The latter requires an expansion of kinetic distribution around an equilibrium state and a successive homogenization over the fast in time and small in space scale dynamics. For a new hybrid continuum-kinetic model the results of linear stability analysis indicates a conditional stability in the relevant low-speed regimes and instability for high speed regimes for higher modes. Extensive numerical experiments confirm that the proposed multiscale model can reflect new phenomena of complex fluids not being present in standard Newtonian fluids. Consequently, the proposed general technique can be successfully used to derive new interesting systems combining the macro and micro structure of a given physical problem.
翻译:在目前的工作中,我们首先引入一个综合多尺度流体建模总框架,然后侧重于新混合连续动力模型的衍生和分析;特别是,我们把保护质量和无活性宏观模型的势头与微生物行为的动能表现结合起来;在引入了小规模的兴趣之后,我们通过Irving-Kirkwood公式来计算复杂的应激拉力;后者要求扩大平衡状态周围的动能分布,并在时间和空间规模的快速和小动态中相继实现同质化;对于一个新的混合连续动力模型,线性稳定分析的结果表明,相关的低速度系统有条件稳定,高速度系统的高速系统不稳定;广泛的数字实验证实,拟议的多尺度模型能够反映标准牛顿流体中不存在的复杂流体的新现象;因此,拟议的一般技术可以成功地用于产生新的有趣的系统,将特定物理问题的宏观和微观结构结合起来。