Generative Adversarial Networks (GANs) are commonly used for modeling complex distributions of data. Both the generators and discriminators of GANs are often modeled by neural networks, posing a non-transparent optimization problem which is non-convex and non-concave over the generator and discriminator, respectively. Such networks are often heuristically optimized with gradient descent-ascent (GDA), but it is unclear whether the optimization problem contains any saddle points, or whether heuristic methods can find them in practice. In this work, we analyze the training of Wasserstein GANs with two-layer neural network discriminators through the lens of convex duality, and for a variety of generators expose the conditions under which Wasserstein GANs can be solved exactly with convex optimization approaches, or can be represented as convex-concave games. Using this convex duality interpretation, we further demonstrate the impact of different activation functions of the discriminator. Our observations are verified with numerical results demonstrating the power of the convex interpretation, with applications in progressive training of convex architectures corresponding to linear generators and quadratic-activation discriminators for CelebA image generation. The code for our experiments is available at https://github.com/ardasahiner/ProCoGAN.


翻译:生成自动网络( GANs) 通常用于模拟复杂的数据分布。 GANs 的生成者和歧视者通常都以神经网络为模型, 形成一个不透明的优化问题, 对生成者和歧视者来说, 前者的生成者与歧视者而言, 后者的生成者与歧视者之间互不相容。 这种网络通常使用渐渐渐的下降率( GDA) 来优化, 但目前还不清楚优化问题是否包含任何支撑点, 或超自然方法在实践中能否找到它们。 在这项工作中, 我们通过对相交双层神经网络歧视者进行模拟, 并分析各种生成者所面临的不透明优化问题, 后者对生成者而言, 后者的优化方法完全可以解决, 或可被描述为渐渐渐的下降率游戏( GDA ) 。 使用这种配置的双重解释, 我们进一步展示了歧视者的不同激活功能的影响 。 我们的观察结果通过数字来验证了对二层神经网络解释的力度, 其应用在相交式神经网络的图像生成者/ CELA Prodasiax 用于Crecialal- condistrax 用于生成的Calal- comfitracial- comcial- comtix comtix 。

0
下载
关闭预览

相关内容

专知会员服务
47+阅读 · 2021年4月24日
专知会员服务
50+阅读 · 2020年12月14日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
必读!生成对抗网络GAN论文TOP 10
GAN生成式对抗网络
58+阅读 · 2019年3月20日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关资讯
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
必读!生成对抗网络GAN论文TOP 10
GAN生成式对抗网络
58+阅读 · 2019年3月20日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员