Entity Resolution (ER) in voice assistants is a prime component during run time that resolves entities in users request to real world entities. ER involves two major functionalities 1. Relevance generation and 2. Ranking. In this paper we propose a low cost relevance generation framework by generating features using customer implicit and explicit feedback signals. The generated relevance datasets can serve as test sets to measure ER performance. We also introduce a set of metrics that accurately measures the performance of ER systems in various dimensions. They provide great interpretability to deep dive and identifying root cause of ER issues, whether the problem is in relevance generation or ranking.
翻译:语音助理中的实体分辨率(ER)是解决用户向真实世界实体提出请求的实体在运行期间的主要组成部分。ER涉及两个主要功能:1. 相关性生成和2. 排名。在本文件中,我们建议通过利用客户的隐含和明确的反馈信号生成特征,建立一个低成本相关性生成框架。生成的相关数据集可以作为衡量ER性能的测试组。我们还引入了一套精确衡量ER系统在不同层面的性能的计量标准。它们为深入潜入和查明ER问题的根源提供了巨大的解释性,无论问题在于相关性生成还是排名。