Prompt Learning has recently gained great popularity in bridging the gap between pretraining tasks and various downstream tasks. It freezes Pretrained Language Models (PLMs) and only tunes a few task-related parameters (prompts) for downstream tasks, greatly reducing the cost of tuning giant models. The key enabler of this is the idea of querying PLMs with task-specific knowledge implicated in prompts. This paper reveals a major limitation of existing methods that the indiscriminate prompts for all input data in a task ignore the intrinsic knowledge from input data, resulting in sub-optimal performance. We introduce Instance-wise Prompt Tuning (IPT), the first prompt learning paradigm that injects knowledge from the input data instances to the prompts, thereby providing PLMs with richer and more concrete context information. We devise a series of strategies to produce instance-wise prompts, addressing various concerns like model quality and cost-efficiency. Across multiple tasks and resource settings, IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
翻译:最近,在缩小培训前任务和各种下游任务之间的差距方面,快速学习最近受到极大欢迎。它冻结了培训前语言模型(PLM),只为下游任务调整了几个任务相关参数(即时),大大降低了巨型模型的调控成本。关键的推动因素是用与任务相关的知识来询问PLM(即时知识),这在迅速的提示中揭示了现有方法中的重大局限性,即:在一项任务中,不分青红皂白地提示所有输入数据时忽略了输入数据的内在知识,从而产生了次优的性能。我们引入了 " 即时即时即时提示 " (IPT),这是第一个将输入数据中的知识注入到提示中的快速学习模式,从而向PLMS提供更丰富和更具体的背景信息。我们设计了一系列战略来生成实例快速信息,解决诸如模型质量和成本效益等各种关切。在多重任务和资源环境下,IPT明显地超越了基于任务的即时学习方法,并实现了与常规调整的类似性业绩,只有0.5%-1.5%的调整参数。