Computer applications are continuously evolving. However, significant knowledge can be harvested from a set of applications and applied in the context of unknown applications. In this paper, we propose to use the harvested knowledge to tune hardware configurations. The goal of such tuning is to maximize hardware efficiency (i.e., maximize an applications performance while minimizing the energy consumption). Our proposed approach, called FORECASTER, uses a deep learning model to learn what configuration of hardware resources provides the optimal energy efficiency for a certain behavior of an application. During the execution of an unseen application, the model uses the learned knowledge to reconfigure hardware resources in order to maximize energy efficiency. We have provided a detailed design and implementation of FORECASTER and compared its performance against a prior state-of-the-art hardware reconfiguration approach. Our results show that FORECASTER can save as much as 18.4% system power over the baseline set up with all resources. On average, FORECASTER saves 16% system power over the baseline setup while sacrificing less than 0.01% of overall performance. Compared to the prior scheme, FORECASTER increases power savings by 7%.


翻译:计算机应用正在不断演变。然而,大量知识可以从一系列应用中获取,并应用于未知应用中。在本文中,我们提议使用所获取的知识来调和硬件配置。这种调试的目的是最大限度地提高硬件效率(即最大限度地提高应用性能,同时尽量减少能源消耗 ) 。我们建议的方法称为“FORECASTER”,采用深层次学习模式来了解硬件资源配置为某种应用行为提供了最佳的能源效率。在应用过程中,该模型利用所学的知识来重新配置硬件资源,以最大限度地提高能效。我们提供了FORECASTER的详细设计和实施,并将其业绩与以前最先进的硬件重组方法进行比较。我们的结果显示,FORECASTER可以节省多达18.4%的系统功率,而所有资源都用于设置基线。平均来说,FORECASTER在基准设置上节省了16%的系统功率,同时牺牲不到总体功绩的0.01%。与以前的计划相比,FORECASTERP将节能增加7%。

0
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员