A novel design optimization approach (ActivO) that employs an ensemble of machine learning algorithms is presented. The proposed approach is a surrogate-based scheme, where the predictions of a weak leaner and a strong learner are utilized within an active learning loop. The weak learner is used to identify promising regions within the design space to explore, while the strong learner is used to determine the exact location of the optimum within promising regions. For each design iteration, exploration is done by randomly selecting evaluation points within regions where the weak learner-predicted fitness is high. The global optimum obtained by using the strong learner as a surrogate is also evaluated to enable rapid convergence once the most promising region has been identified. First, the performance of ActivO was compared against five other optimizers on a cosine mixture function with 25 local optima and one global optimum. In the second problem, the objective was to minimize indicated specific fuel consumption of a compression-ignition internal combustion (IC) engine while adhering to desired constraints associated with in-cylinder pressure and emissions. Here, the efficacy of the proposed approach is compared to that of a genetic algorithm, which is widely used within the internal combustion engine community for engine optimization, showing that ActivO reduces the number of function evaluations needed to reach the global optimum, and thereby time-to-design by 80%. Furthermore, the optimization of engine design parameters leads to savings of around 1.9% in energy consumption, while maintaining operability and acceptable pollutant emissions.


翻译:介绍了一种采用机器学习算法组合组合的新型设计优化方法(AppivO) 。 提议的方法是一种代用办法,在积极的学习循环中利用对弱精瘦和强学习者的预测,在积极学习循环中利用对弱精瘦和强学习者的预测。 弱学习者用来确定设计空间内的有希望的区域,而强学习者则用来确定在有希望的区域内最佳的最佳位置。 对于每种设计迭代,都通过随机选择在学习者预测的低精度高的区域内的评价点来进行探索。 使用强学习者作为代用方法获得的全球最佳方案,以便在发现最有希望的区域后能够迅速趋同。 第一, 弱学习者用来确定设计空间内的弱精瘦和强学习者的预测。 弱学习者用来确定设计空间内有希望的最佳区域内的最佳选择方法,而强学习者则用来确定最佳最佳选择评估点。 强的学习者则用来与5个其他最佳组合混合功能相比,其中25个是局部的局部选调,一个全球最佳选择。 在第二个问题中,目标是尽可能减少压缩内部燃烧引擎的燃料消耗量,同时坚持与气体压力和排放的标准化的排放量。 在这里,拟议的方法的效能将逐渐显示为最优化的发动机的发动机的发动机, 。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
18+阅读 · 2019年1月16日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员