Quantile regression is a powerful data analysis tool that accommodates heterogeneous covariate-response relationships. We find that by coupling the asymmetric Laplace working likelihood with appropriate shrinkage priors, we can deliver posterior inference that automatically adapts to possible sparsity in quantile regression analysis. After a suitable adjustment on the posterior variance, the posterior inference provides asymptotically valid inference under heterogeneity. Furthermore, the proposed approach leads to oracle asymptotic efficiency for the active (nonzero) quantile regression coefficients and super-efficiency for the non-active ones. By avoiding the need to pursue dichotomous variable selection, the Bayesian computational framework demonstrates desirable inference stability with respect to tuning parameter selection. Our work helps to uncloak the value of Bayesian computational methods in frequentist inference for quantile regression.
翻译:量回归是一个强大的数据分析工具,它能容纳多种不同的共变反应关系。我们发现,通过将不对称拉比(Laplace)的工作可能性与适当的缩缩前科结合起来,我们可以在微量回归分析中提供后继推论,自动适应可能的零度回归分析。在对后端差异进行适当调整后,后继推论在异质性下提供了无现效的有效推论。此外,拟议方法可以导致主动(非零)四分位回归系数和非活动方超效率的奥克莱特效率。通过避免采用二分式变量选择的必要性,巴伊西亚计算框架在调整参数选择方面显示了可取的推论稳定性。我们的工作有助于在四分回归的经常推论中消除巴伊斯计算方法的价值。