Quantile regression is a powerful data analysis tool that accommodates heterogeneous covariate-response relationships. We find that by coupling the asymmetric Laplace working likelihood with appropriate shrinkage priors, we can deliver posterior inference that automatically adapts to possible sparsity in quantile regression analysis. After a suitable adjustment on the posterior variance, the posterior inference provides asymptotically valid inference under heterogeneity. Furthermore, the proposed approach leads to oracle asymptotic efficiency for the active (nonzero) quantile regression coefficients and super-efficiency for the non-active ones. By avoiding the need to pursue dichotomous variable selection, the Bayesian computational framework demonstrates desirable inference stability with respect to tuning parameter selection. Our work helps to uncloak the value of Bayesian computational methods in frequentist inference for quantile regression.


翻译:量回归是一个强大的数据分析工具,它能容纳多种不同的共变反应关系。我们发现,通过将不对称拉比(Laplace)的工作可能性与适当的缩缩前科结合起来,我们可以在微量回归分析中提供后继推论,自动适应可能的零度回归分析。在对后端差异进行适当调整后,后继推论在异质性下提供了无现效的有效推论。此外,拟议方法可以导致主动(非零)四分位回归系数和非活动方超效率的奥克莱特效率。通过避免采用二分式变量选择的必要性,巴伊西亚计算框架在调整参数选择方面显示了可取的推论稳定性。我们的工作有助于在四分回归的经常推论中消除巴伊斯计算方法的价值。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月29日
An additive graphical model for discrete data
Arxiv
0+阅读 · 2021年12月29日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
0+阅读 · 2021年12月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员