Continual learning in computational systems is challenging due to catastrophic forgetting. We discovered a two layer neural circuit in the fruit fly olfactory system that addresses this challenge by uniquely combining sparse coding and associative learning. In the first layer, odors are encoded using sparse, high dimensional representations, which reduces memory interference by activating non overlapping populations of neurons for different odors. In the second layer, only the synapses between odor activated neurons and the output neuron associated with the odor are modified during learning; the rest of the weights are frozen to prevent unrelated memories from being overwritten. We show empirically and analytically that this simple and lightweight algorithm significantly boosts continual learning performance. The fly associative learning algorithm is strikingly similar to the classic perceptron learning algorithm, albeit two modifications, which we show are critical for reducing catastrophic forgetting. Overall, fruit flies evolved an efficient lifelong learning algorithm, and circuit mechanisms from neuroscience can be translated to improve machine computation.


翻译:计算系统中的持续学习由于灾难性的遗忘而具有挑战性。 我们在果蝇嗅觉系统中发现了两层神经电路,通过将稀疏的编码和关联性学习的独特结合来应对这一挑战。 在第一层,通过稀疏的、高维的表达方式,对水体进行编码,通过激活不同气态的神经非重叠成份来减少记忆干扰。在第二层,只有气味活性神经元和与气味相关的输出神经神经的突触在学习过程中得到修改;其余的重量被冻结,以防止不相干记忆被过度书写。我们从经验上和分析上表明,这种简单和轻量级的算法极大地提升了持续学习的绩效。飞行关联性学习算法与典型的感官学习算法非常相似,尽管我们已表明,两种修改对于减少灾难性的遗忘至关重要。总的来说,水果苍蝇演变出一种高效的终身学习算法,而神经科学的电路机制可以转换为改进机器的计算方法。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
126+阅读 · 2020年9月6日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
6+阅读 · 2018年12月10日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
126+阅读 · 2020年9月6日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
6+阅读 · 2018年12月10日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
15+阅读 · 2018年4月3日
Top
微信扫码咨询专知VIP会员