We consider the nonparametric multivariate isotonic regression problem, where the regression function is assumed to be nondecreasing with respect to each predictor. Our goal is to construct a Bayesian credible interval for the function value at a given interior point with assured limiting frequentist coverage. We put a prior on unrestricted step-functions, but make inference using the induced posterior measure by an "immersion map" from the space of unrestricted functions to that of multivariate monotone functions. This allows maintaining the natural conjugacy for posterior sampling. A natural immersion map to use is a projection via a distance, but in the present context, a block isotonization map is found to be more useful. The approach of using the induced "immersion posterior" measure instead of the original posterior to make inference provides a useful extension of the Bayesian paradigm, particularly helpful when the model space is restricted by some complex relations. We establish a key weak convergence result for the posterior distribution of the function at a point in terms of some functional of a multi-indexed Gaussian process that leads to an expression for the limiting coverage of the Bayesian credible interval. Analogous to a recent result for univariate monotone functions, we find that the limiting coverage is slightly higher than the credibility, the opposite of a phenomenon observed in smoothing problems. Interestingly, the relation between credibility and limiting coverage does not involve any unknown parameter. Hence by a recalibration procedure, we can get a predetermined asymptotic coverage by choosing a suitable credibility level smaller than the targeted coverage, and thus also shorten the credible intervals.


翻译:我们考虑的是非对数多异性等离子回归问题, 假设回归函数不会对每个预测器进行降级。 我们的目标是在特定内部点为功能值构建一个巴伊西亚可信的间隔, 保证限制频率覆盖。 我们之前设置了一个不设限制的分级功能, 但使用“ 沉浸图” 的引致的后部测量法进行推论, 从无限制功能的空间到多异性单体函数的空间。 这样可以维持后方取样的自然同级。 一个自然沉浸图是远距离的预测, 但在当前背景下, 发现一个块异质化图更有用。 使用诱导的“ 沉没后部” 度测量法, 而不是最初的场景, 使用“ 沉没后部” 来进行推论, 特别是当模型空间受到某些复杂关系的限制时。 我们为选择后端函数的可信度分布, 在多指数级的某个功能点上是预测, 但在当前背景下, 区块的分位图比较图会更有用。 因此, 使用“ 淡度” 度测量度测量度的比我们所观察到的平坦度进程 的平坦度, 找到一个结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Nonparametric Regression for 3D Point Cloud Learning
Arxiv
0+阅读 · 2023年1月26日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员