We consider two approaches to study non-reversible Markov processes, namely the Hypocoercivity Theory (HT) and GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling); the basic idea behind both of them is to split the process into a reversible component and a non-reversible one, and then quantify the way in which they interact. We compare such theories and provide explicit formulas to pass from one formulation to the other; as a bi-product we give a simple proof of the link between reversibility of the dynamics and gradient flow structure of the associated Fokker-Planck equation. We do this both for linear Markov processes and for a class of nonlinear Markov process as well. We then characterize the structure of the Large deviation functional of generalised-reversible processes; this is a class of non-reversible processes of large relevance in applications. Finally, we show how our results apply to two classes of Markov processes, namely non-reversible diffusion processes and a class of Piecewise Deterministic Markov Processes (PDMPs), which have recently attracted the attention of the statistical sampling community. In particular, for the PDMPs we consider we prove entropy decay.
翻译:我们考虑两种方法来研究不可逆的Markov过程,即假假理论(HT)和GENENERIC(非等离子变换-不可逆可逆的 Coupling ) ;这两种方法的基本想法是将过程分成一个可逆组成部分和一个不可逆组成部分,然后量化它们相互作用的方式。我们比较这些理论并提供从一种配方传到另一种配方的明确公式;作为一个双产品,我们简单地证明相关Fokker-Planck等式动态和梯度结构的可逆性与梯度结构之间的联系。我们这样做是为了线性马尔可夫进程和一类非线性马尔科夫进程。然后我们描述一般可逆进程的巨大偏差结构;这是在应用中具有极大相关性的不可逆性过程的一类。最后,我们展示了我们的结果如何适用于两类Markov进程,即不可逆的传播过程和某类令人厌异的马克托尔克-普朗克等方程式的动态和梯度流之间的关联性联系。我们这样做是为了进行线性马尔科夫进程和一类非线性马可逆性马可逆的马可逆性进程。我们最近开始的统计性马可变变化的模型的模型的样本社区。