The Harrow, Hassidim, Lloyd (HHL) algorithm is a quantum algorithm expected to accelerate solving large-scale linear ordinary differential equations (ODEs). To apply the HHL to non-linear problems such as chemical reactions, the system must be linearized. In this study, Carleman linearization was utilized to transform nonlinear first-order ODEs of chemical reactions into linear ODEs. Although this linearization theoretically requires the generation of an infinite matrix, the original nonlinear equations can be reconstructed. For the practical use, the linearized system should be truncated with finite size and analysis precision can be determined by the extent of the truncation. Matrix should be sufficiently large so that the precision is satisfied because quantum computers can treat. Our method was applied to a one-variable nonlinear dy/dt = -y^2 system to investigate the effect of truncation orders in Carleman linearization and time step size on the absolute error. Subsequently, two zero-dimensional homogeneous ignition problems for H2/air and CH4/air gas mixtures were solved. The results revealed that the proposed method could accurately reproduce reference data. Furthermore, an increase in the truncation order in Carleman linearization improved accuracy even with a large time-step size. Thus, our approach can provide accurate numerical simulations rapidly for complex combustion systems.
翻译:Harrow, Hassidim, Lloyd (HHL) 算法是一种量子算法,预期可以加速解决大规模线性普通差分方程(ODEs) 。 要将 HHLL 应用于化学反应等非线性问题, 系统必须线性化。 在这项研究中, Carleman 线性化法用于将化学反应的非线性一级ODEs转换成线性ODEs。 虽然这种线性化在理论上需要生成一个无限的矩阵, 原始的非线性方程是可以重建的。 为了实际应用, 线性系统应该用有限的尺寸来截断线性, 分析精确度可以由脱轨的程度来决定。 矩阵应该足够大, 以便满足精确度, 因为量级计算机可以治疗。 我们的方法被用于将非线性第一线性第一线性化学反应OD/dt = -y%2 系统来调查Carleman 线性命令在线性线性线性矩阵化的影响, 可以重建非线性方方方方方方方方方方方方方方方方方方方方方方方方方方程式。 随后, 线性线性线性线性点点点点点点点的线性点点点点点的线性点解系统应该用有限的尺寸和分析尺寸和分析精度,, 和精度的精确度系统应该以截断度精确度精确度的尺寸来决定速度的尺寸, 量度精确度精确度精确度精确度精确度的大小, 。结果,,,,, 。结果显示一个精确性方位性方形性方位的精确性方位性方位性方位性方位性方位法,, 。