Searching for objects in indoor organized environments such as homes or offices is part of our everyday activities. When looking for a target object, we jointly reason about the rooms and containers the object is likely to be in; the same type of container will have a different probability of having the target depending on the room it is in. We also combine geometric and semantic information to infer what container is best to search, or what other objects are best to move, if the target object is hidden from view. We propose to use a 3D scene graph representation to capture the hierarchical, semantic, and geometric aspects of this problem. To exploit this representation in a search process, we introduce Hierarchical Mechanical Search (HMS), a method that guides an agent's actions towards finding a target object specified with a natural language description. HMS is based on a novel neural network architecture that uses neural message passing of vectors with visual, geometric, and linguistic information to allow HMS to reason across layers of the graph while combining semantic and geometric cues. HMS is evaluated on a novel dataset of 500 3D scene graphs with dense placements of semantically related objects in storage locations, and is shown to be significantly better than several baselines at finding objects and close to the oracle policy in terms of the median number of actions required. Additional qualitative results can be found at https://ai.stanford.edu/mech-search/hms.
翻译:在室内有组织的环境中搜索物体,如家室或办公室,是我们日常活动的一部分。在寻找目标对象时,我们共同解释该对象可能所在的房间和容器;同一类容器的概率不同,其目标取决于其所在的房间。我们还将几何和语义信息结合起来,以推断什么是最适合搜索的容器,或者如果目标对象对象隐藏在视野之外,其他物体最适于移动的是什么。我们提议使用3D场景图表示方式来捕捉这一问题的等级、语义和几何方面。为了在搜索过程中利用这个表示方式,我们采用了高射力机械搜索(HMS),该方法将指导一个代理人的行动,以找到一个有自然语言描述的目标对象。我们还将使用神经信息传递带有视觉、地理和语言信息的矢量信息,使HMS能够跨层次理解,同时结合语义和几何等直线指示。为了在500 3D情景图表的新数据集中,我们引入了高射速机械搜索(HMS),指导一个代理人的行动方法,以找到一个符合自然语言描述的目标对象。HMS基于新的神经传递信息的结构网络结构图,可以在更精确的基线/直径的定位上找到若干次定位,在更接近的定位定位上找到更接近的定标。