We present a representation learning framework for financial time series forecasting. One challenge of using deep learning models for finance forecasting is the shortage of available training data when using small datasets. Direct trend classification using deep neural networks trained on small datasets is susceptible to the overfitting problem. In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements. We consider a class-conditioned latent variable model. We train an encoder network to maximize the mutual information between the latent variables and the trend information conditioned on the encoded observed variables. We show that conditional mutual information maximization can be approximated by a contrastive loss. Then, the problem is transformed into a classification task of determining whether two encoded representations are sampled from the same class or not. This is equivalent to performing pairwise comparisons of the training datapoints, and thus, improves the generalization ability of the encoder network. We use deep autoregressive models as our encoder to capture long-term dependencies of the sequence data. Empirical experiments indicate that our proposed method has the potential to advance state-of-the-art performance.


翻译:我们为财务时间序列预测提供了一个代表性学习框架。在使用小型数据集时,利用深学习模型进行财务预测的挑战之一是缺乏现有培训数据。使用在小数据集方面受过训练的深神经网络进行直接趋势分类很容易造成问题。在本文中,我们提议首先从时间序列数据中学习缩略图,然后利用所学的表述方法来训练一个更简单的模型来预测时间序列变化。我们考虑一个有等级条件的潜在潜在变数模型。我们训练了一个编码网络,以尽量扩大潜在变数与以编码观测到的变量为条件的趋势信息之间的相互信息。我们显示,有条件的相互信息最大化可以被对比性损失所近似。然后,问题变成一个分类任务,即确定两个编码的表达方式是否从同一类别中抽样,这相当于对培训数据点进行对齐比较,从而提高编码网络的总体能力。我们使用深自导模型作为我们的编码,用以捕捉测测测测测测测序数据的长期依赖性。Enpiral实验表明,我们提出的方法具有前进状态的潜力。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
88+阅读 · 2021年6月29日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员