The number of recurrent events before a terminating event is often of interest. For instance, death terminates an individual's process of rehospitalizations and the number of rehospitalizations is an important indicator of economic cost. We propose a model in which the number of recurrences before termination is a random variable of interest, enabling inference and prediction on it. Then, conditionally on this number, we specify a joint distribution for recurrence and survival. This novel conditional approach induces dependence between recurrence and survival, which is often present, for instance due to frailty that affects both. Additional dependence between recurrence and survival is introduced by the specification of a joint distribution on their respective frailty terms. Moreover, through the introduction of an autoregressive model, our approach is able to capture the temporal dependence in the recurrent events trajectory. A non-parametric random effects distribution for the frailty terms accommodates population heterogeneity and allows for data-driven clustering of the subjects. A tailored Gibbs sampler involving reversible jump and slice sampling steps implements posterior inference. We illustrate our model on colorectal cancer data, compare its performance with existing approaches and provide appropriate inference on the number of recurrent events.


翻译:终止事件之前经常发生事件的次数往往引起兴趣。例如,死亡终止了一个人的复发过程和复发次数,这是经济成本的一个重要指标。我们提出了一个模型,在模型中,终止前复发次数是一个随机的利息变量,从而可以推断和预测它。然后,以这个数字为条件,我们指定了复发和生存的联合分配。这种新的有条件方法往往引起复发和生存之间的依赖性,这经常存在,例如由于既影响又影响两方面的弱点。复发和存活之间的额外依赖性是通过按其各自脆弱条件联合分发的规格而引入的。此外,通过采用自动递增模式,我们的方法能够捕捉到复发事件轨迹中的时间依赖性。对疲软性术语的非参数随机性分布适应了人口的异性,并允许以数据驱动的组合。一个定制的Gibs取样器,包括可逆跳动和切片采样步骤,用于后推推推。我们用关于经常癌症的模型,我们用现有数据比较了当前情况。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
5+阅读 · 2018年1月16日
Arxiv
5+阅读 · 2016年10月24日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员