In medicine, survival analysis studies the time duration to events of interest such as mortality. One major challenge is how to deal with multiple competing events (e.g., multiple disease diagnoses). In this work, we propose a transformer-based model that does not make the assumption for the underlying survival distribution and is capable of handling competing events, namely SurvTRACE. We account for the implicit \emph{confounders} in the observational setting in multi-events scenarios, which causes selection bias as the predicted survival probability is influenced by irrelevant factors. To sufficiently utilize the survival data to train transformers from scratch, multiple auxiliary tasks are designed for multi-task learning. The model hence learns a strong shared representation from all these tasks and in turn serves for better survival analysis. We further demonstrate how to inspect the covariate relevance and importance through interpretable attention mechanisms of SurvTRACE, which suffices to great potential in enhancing clinical trial design and new treatment development. Experiments on METABRIC, SUPPORT, and SEER data with 470k patients validate the all-around superiority of our method.


翻译:在医学中,生存分析研究死亡等有关事件的时间期限。一个重大挑战是如何处理多种相互竞争的事件(如多重疾病诊断)。在这项工作中,我们提出了一个基于变压器的模式,该模式不假定基本生存分布,能够处理相互竞争的事件,即SurvTRACE。我们在多活动情况下的观察环境中对隐含的隐含作用作出了说明,这导致选择偏差,因为预测生存概率受不相关因素的影响。为了充分利用生存数据从零开始培训变压器,设计了多重辅助任务,用于多任务学习。因此,该模型从所有这些任务中学习了强有力的共同代表,进而有助于更好的生存分析。我们进一步展示了如何通过SurvTRACE的可解释关注机制来检查共变的相关性和重要性。 SurvTRACE的观察机制足以在加强临床试验设计和新的治疗发展方面有很大潜力。对METABRIC、支助和SERR数据的实验,有470k病人验证了我们方法的全近优势。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
9+阅读 · 2021年2月25日
Arxiv
3+阅读 · 2020年9月30日
Arxiv
4+阅读 · 2019年9月5日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员