This letter introduces a novel framework to optimize the power allocation for users in a Rate Splitting Multiple Access (RSMA) network. In the network, messages intended for users are split into different parts that are a single common part and respective private parts. This mechanism enables RSMA to flexibly manage interference and thus enhance energy and spectral efficiency. Although possessing outstanding advantages, optimizing power allocation in RSMA is very challenging under the uncertainty of the communication channel and the transmitter has limited knowledge of the channel information. To solve the problem, we first develop a Markov Decision Process framework to model the dynamic of the communication channel. The deep reinforcement algorithm is then proposed to find the optimal power allocation policy for the transmitter without requiring any prior information of the channel. The simulation results show that the proposed scheme can outperform baseline schemes in terms of average sum-rate under different power and QoS requirements.
翻译:本信引入了一个新颖的框架,以优化在速率分解多重接入网络(RSMA)中用户的电力分配。在网络中,针对用户的信息被分成不同的部分,这些部分是单一的共同部分和各自的私人部分。这一机制使RSMA能够灵活地管理干扰,从而提高能源和光谱效率。虽然具有突出优势,但在通信频道的不确定性下,优化RSMA的电力分配非常具有挑战性,发射机对频道信息的了解有限。为了解决问题,我们首先开发了马尔科夫决定程序框架,以模拟通信频道的动态。然后提出了深度增强算法,以便为发射器找到最佳的电力分配政策,而无需事先提供频道的信息。模拟结果表明,在不同的电力和QOS要求下,拟议的计划可以在平均总率方面优于基线计划。