This work introduces a scaffolding framework to compactly parametrise solid structures with conforming NURBS elements for isogeometric analysis. A novel formulation introduces a topological, geometrical and parametric subdivision of the space in a minimal plurality of conforming vectorial elements. These determine a multi-compartmental scaffolding for arbitrary branching patterns. A solid smoothing paradigm is devised for the conforming scaffolding achieving higher than positional geometrical and parametric continuity. Results are shown for synthetic shapes of varying complexity, for modular CAD geometries, for branching structures from tessellated meshes and for organic biological structures from imaging data. Representative simulations demonstrate the validity of the introduced scaffolding framework with scalable performance and groundbreaking applications for isogeometric analysis.
翻译:这项工作为紧凑的对称固态结构引入了支架框架,以形成符合 NURBS 元素的近视测量分析; 一种新型配方在最小多元的对称矢量元素中引入空间的表层、几何和对称分层; 确定了任意分流模式的多构形支架; 设计了一个坚实的平滑范式,以达到高于定位几何和对称连续性的对称支架; 展示了不同复杂合成形状、模块 CAD 的对称、发泡模模模组的对称结构以及成像数据中的有机生物结构的结果; 代表性模拟展示了引入的对称框架的正确性能,并展示了可测量性能和异形分析的地面应用。