We revisit the classical problem of nonparametric density estimation, but impose local differential privacy constraints. Under such constraints, the original data $X_1,\ldots,X_n$, taking values in $\mathbb{R}^d $, cannot be directly observed, and all estimators are functions of the randomised output of a suitable privacy mechanism. The statistician is free to choose the form of the privacy mechanism, and in this work we propose to add Laplace distributed noise to a discretisation of the location of a vector $X_i$. Based on these randomised data, we design a novel estimator of the density function, which can be viewed as a privatised version of the well-studied histogram density estimator. Our theoretical results include universal pointwise consistency and strong universal $L_1$-consistency. In addition, a convergence rate over classes of Lipschitz functions is derived, which is complemented by a matching minimax lower bound.
翻译:我们重新审视了传统的非对称密度估计问题,但提出了本地差异隐私限制。在这样的限制下,无法直接观察原始数据 $X_1,\ldots,X_n$,以$mathbb{R ⁇ d$计值,而所有估计者都是适当隐私机制随机输出的函数。统计员可以自由选择隐私机制的形式,在此工作中,我们提议将 Laplace 分布的噪音添加到矢量 $X_i$ 的离散位置上。根据这些随机数据,我们设计了一个新的密度函数估计器,可以把它视为研究周密的直方密度估计器的精密版本。我们的理论结果包括通用的点一致性和强大的通用的$L_1美元一致性。此外,在Libschitz 函数的类别上,还得出一种趋同率,由匹配的最小值较低约束来补充。