Under some regularity assumptions, we report an a priori error analysis of a dG scheme for the Poisson and Stokes flow problem in their dual mixed formulation. Both formulations satisfy a Babu\v{s}ka-Brezzi type condition within the space H(div) x L2. It is well known that the lowest order Crouzeix-Raviart element paired with piecewise constants satisfies such a condition on (broken) H1 x L2 spaces. In the present article, we use this pair. The continuity of the normal component is weakly imposed by penalizing jumps of the broken H(div) component. For the resulting methods, we prove well-posedness and convergence with constants independent of data and mesh size. We report error estimates in the methods natural norms and optimal local error estimates for the divergence error. In fact, our finite element solution shares for each triangle one DOF with the CR interpolant and the divergence is locally the best-approximation for any regularity. Numerical experiments support the findings and suggest that the other errors converge optimally even for the lowest regularity solutions and a crack-problem, as long as the crack is resolved by the mesh.
翻译:在一些常规假设下,我们报告对Poisson和Stokes的双混合配方的 dG 流程问题进行了先验错误分析。两种配方都满足了H(div)xL2空间内Babu\v{s{s}ka-Brezzi类型的条件。众所周知,Crouzeix-Raviart 最小顺序元素与片断常数相配,满足了(broken) H1xL2空间的这种条件。在目前的条款中,我们使用这一对方。正常组件的连续性因惩罚破碎的H(div)组件的跳跃而弱化。对于由此产生的方法,我们证明我们完全符合和融合了数据与网体大小独立的恒定不变的常数和趋同。我们用自然规范来报告错误估计数,并报告差异误差误差的最佳地方误差。事实上,我们每个DOF 和CR内插器的三角点的定数的定数解决方案是当地最符合常数的。数字实验支持了调查结果,并表明其他错误的最佳趋近点,即使是最接近的常规解决办法。