We consider the problem of conditional independence testing of $X$ and $Y$ given $Z$ where $X,Y$ and $Z$ are three real random variables and $Z$ is continuous. We focus on two main cases - when $X$ and $Y$ are both discrete, and when $X$ and $Y$ are both continuous. In view of recent results on conditional independence testing (Shah and Peters, 2018), one cannot hope to design non-trivial tests, which control the type I error for all absolutely continuous conditionally independent distributions, while still ensuring power against interesting alternatives. Consequently, we identify various, natural smoothness assumptions on the conditional distributions of $X,Y|Z=z$ as $z$ varies in the support of $Z$, and study the hardness of conditional independence testing under these smoothness assumptions. We derive matching lower and upper bounds on the critical radius of separation between the null and alternative hypotheses in the total variation metric. The tests we consider are easily implementable and rely on binning the support of the continuous variable $Z$. To complement these results, we provide a new proof of the hardness result of Shah and Peters.
翻译:我们考虑的是有条件独立测试X美元和美元给Z美元的问题,其中X美元、Y美元和Z美元是三个真实的随机变量,Z美元是连续的。我们集中关注两个主要案例----当X美元和Y美元都是离散的,当X美元和Y美元都是连续的。鉴于最近关于有条件独立测试的结果(Shah和Peters,2018年),我们无法期望设计非三重测试,这种测试控制了所有绝对连续的有条件独立分销的I型错误,同时仍然确保了对有趣的替代产品的力量。因此,我们查明了以美元和Z美元为单位的有条件分配的各种自然顺畅假设,这些假设在支持Z美元方面各不相同,并研究了在这些平稳假设下有条件独立测试的硬性。我们从总变差度标准中的无效和替代假设之间的关键半径上拉。我们认为,测试很容易实施,并依靠不断变值Z$美元的支持。为了补充这些结果,我们提供了一份新的证据,证明Sha和Peter的硬性结果。