This work proposes a view of probability as a relative measure rather than an absolute one. To demonstrate this concept, we focus on finite outcome spaces and develop three fundamental axioms that establish requirements for relative probability functions. We then provide a library of examples of these functions and a system for composing them. Additionally, we discuss a relative version of Bayesian inference and its digital implementation. Finally, we prove the topological closure of the relative probability space, highlighting its ability to preserve information under limits.
翻译:暂无翻译