We consider parameter estimation of ordinary differential equation (ODE) models from noisy observations. For this problem, one conventional approach is to fit numerical solutions (e.g., Euler, Runge--Kutta) of ODEs to data. However, such a method does not account for the discretization error in numerical solutions and has limited estimation accuracy. In this study, we develop an estimation method that quantifies the discretization error based on data. The key idea is to model the discretization error as random variables and estimate their variance simultaneously with the ODE parameter. The proposed method has the form of iteratively reweighted least squares, where the discretization error variance is updated with the isotonic regression algorithm and the ODE parameter is updated by solving a weighted least squares problem using the adjoint system. Experimental results demonstrate that the proposed method attains robust estimation with at least comparable accuracy to the conventional method by successfully quantifying the reliability of the numerical solutions.
翻译:我们从噪音观测中考虑普通差分方程模型的参数估计。 对于这个问题,一种常规的方法是将脱差数字解决方案(如Euler、Runge-Kutta)与数据相匹配。 但是,这种方法没有说明数字解决方案中的离散错误,而且估算准确性有限。我们在这个研究中开发了一种估算方法,根据数据对离散错误进行量化。关键的想法是将离散错误作为随机变量进行模型,并同时估计与脱差参数的差异。 提议的方法的形式是迭代重标最小方形,即离散错误与异回归算法更新,而脱差参数则通过使用联合系统解决加权最小方形问题而更新。实验结果表明,拟议方法通过成功地量化数字解决方案的可靠性,实现了与常规方法至少具有可比性的可靠估算。