Children learn continually by asking questions about the concepts they are most curious about. With robots becoming an integral part of our society, they must also learn unknown concepts continually by asking humans questions. This paper presents a novel framework for curiosity-driven online learning of objects. The paper utilizes a recent state-of-the-art approach for continual learning and adapts it for online learning of objects. The paper further develops a self-supervised technique to find most of the uncertain objects in an environment by utilizing an internal representation of previously learned classes. We test our approach on a benchmark dataset for continual learning on robots. Our results show that our curiosity-driven online learning approach beats random sampling and softmax-based uncertainty sampling in terms of classification accuracy and the total number of classes learned.
翻译:孩子们通过询问他们最好奇的概念不断学习。 随着机器人成为我们社会不可分割的一部分, 他们也必须不断通过询问人类问题来学习未知的概念。 本文为好奇驱动的在线天体学习提供了一个新颖的框架。 本文使用最新的最先进的持续学习方法, 并将它用于在线天体学习。 本文进一步开发了一种自我监督技术, 利用以前学习过的天体的内部代表来在环境中寻找大多数不确定天体。 我们测试了我们在机器人上持续学习的基准数据集上的方法。 我们的结果显示, 我们的好奇驱动的在线学习方法在分类准确性和学习班级总数方面,胜过随机抽样和基于软式的不确定性抽样。