Recurring outbreaks of COVID-19 have posed enduring effects on global society, which calls for a predictor of pandemic waves using various data with early availability. Existing prediction models that forecast the first outbreak wave using mobility data may not be applicable to the multiwave prediction, because the evidence in the USA and Japan has shown that mobility patterns across different waves exhibit varying relationships with fluctuations in infection cases. Therefore, to predict the multiwave pandemic, we propose a Social Awareness-Based Graph Neural Network (SAB-GNN) that considers the decay of symptom-related web search frequency to capture the changes in public awareness across multiple waves. Our model combines GNN and LSTM to model the complex relationships among urban districts, inter-district mobility patterns, web search history, and future COVID-19 infections. We train our model to predict future pandemic outbreaks in the Tokyo area using its mobility and web search data from April 2020 to May 2021 across four pandemic waves collected by Yahoo Japan Corporation under strict privacy protection rules. Results demonstrate our model outperforms state-of-the-art baselines such as ST-GNN, MPNN, and GraphLSTM. Though our model is not computationally expensive (only 3 layers and 10 hidden neurons), the proposed model enables public agencies to anticipate and prepare for future pandemic outbreaks.
翻译:由于美国和日本的证据表明,不同波的移动模式与感染病例的波动有着不同的关系,因此,为了预测多波流感,我们提议建立一个基于社会认识的图像神经网络(SAB-GNN),以考虑到与症状有关的网络搜索频率的衰减,以捕捉多种波的公众意识变化。我们的模型结合了GNN和LSTM,以模拟城市地区、地区间流动模式、网络搜索历史和未来的COVID-19感染之间的复杂关系。我们用2020年4月至2021年5月的移动和网络搜索数据,对东京地区未来爆发的流行病进行预测。我们用其流动和网络搜索数据,从2020年4月至2021年在亚虎日本公司根据严格的隐私保护规则收集的四波中进行预测。结果显示,我们的模型超越了与症状有关的网络搜索频率,以捕捉多种波的公众意识变化。我们的模型将GNN、MPN和LSTM结合起来,以模拟城市地区、地区间流动模式、网络搜索历史和未来的COVID-19感染病例。我们用来预测东京地区今后爆发的模型不是昂贵的,而能够对10级和10级的公众进行计算。