Generative Adversarial Networks (GANs) have significantly advanced image synthesis, however, the synthesis quality drops significantly given a limited amount of training data. To improve the data efficiency of GAN training, prior work typically employs data augmentation to mitigate the overfitting of the discriminator yet still learn the discriminator with a bi-classification (i.e., real vs. fake) task. In this work, we propose a data-efficient Instance Generation (InsGen) method based on instance discrimination. Concretely, besides differentiating the real domain from the fake domain, the discriminator is required to distinguish every individual image, no matter it comes from the training set or from the generator. In this way, the discriminator can benefit from the infinite synthesized samples for training, alleviating the overfitting problem caused by insufficient training data. A noise perturbation strategy is further introduced to improve its discriminative power. Meanwhile, the learned instance discrimination capability from the discriminator is in turn exploited to encourage the generator for diverse generation. Extensive experiments demonstrate the effectiveness of our method on a variety of datasets and training settings. Noticeably, on the setting of 2K training images from the FFHQ dataset, we outperform the state-of-the-art approach with 23.5% FID improvement.


翻译:然而,合成质量的下降是显著的,因为培训数据数量有限。为了提高GAN培训的数据效率,先前的工作通常采用数据增强方法,以减少歧视者过分适应歧视者,但仍然以双重分类(即真实与假)任务来学习歧视者。在这项工作中,我们提议基于实例歧视的数据效率生成(InsGen)方法。具体地说,除了区分真实领域与假领域外,歧视者需要区分每一种个人图像,而无论这些图像来自培训组还是来自生成方。这样,歧视者可以受益于培训的无限综合样本,缓解培训数据不足造成的过度适应问题。还进一步采用了噪音渗透战略来改善其歧视力量。与此同时,从歧视者那里学到的事例生成能力反过来被用来鼓励不同生成者。广泛的实验表明我们的方法在各种数据集和培训环境上的有效性,而无论这些图像来自培训组还是来自生成方。可以明显地从培训的无限综合样本中获益,从而缓解了培训数据组合2K模式的改进。我们从23-FID模式中选择了23-FID格式的2-HFF格式。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
7+阅读 · 2020年3月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
9+阅读 · 2021年3月3日
FIGR: Few-shot Image Generation with Reptile
Arxiv
5+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
7+阅读 · 2020年3月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员