MITRE ATT&CK is a widespread ontology that specifies tactics, techniques, and procedures (TTPs) typical of malware behaviour, making it possible to exploit such TTPs for malware identification. However, this is far from being an easy task given that benign usage of software can also match some of these TTPs. In this paper, we present RADAR, a system that can identify malicious behaviour in network traffic in two stages: first, RADAR extracts MITRE ATT&CK TTPs from arbitrary network traffic captures, and, secondly, it deploys decision trees to differentiate between malicious and benign uses of the detected TTPs. In order to evaluate RADAR, we created a dataset comprising of 2,286,907 malicious and benign samples, for a total of 84,792,452 network flows. The experimental analysis confirms that RADAR is able to $(i)$ match samples to multiple different TTPs, and $(ii)$ effectively detect malware with an AUC score of 0.868. Beside being effective, RADAR is also highly configurable, interpretable, privacy preserving, efficient and can be easily integrated with existing security infrastructure to complement their capabilities.
翻译:MITRE ATT&CK是一种广泛的本体学,它具体规定了恶意行为典型的战术、技术和程序(TTPs),从而有可能利用这种TTP来识别恶意行为,然而,鉴于软件的良性使用也可与其中一些TTP相匹配,这远非一项容易的任务。在本文件中,我们介绍了RADAR, 这个系统可以分两个阶段识别网络交通中的恶意行为:首先,RADAR从任意的网络交通捕获中提取MITRE ATT &CK TTPs,第二,它部署决策树来区分检测到的TTP的恶意和无害用途。为了评估RADAR,我们建立了一个由2,286,907个恶意和良性样品组成的数据集,总共84,792,452个网络流动。实验分析证实,RADAR能够用美元(i)将样品与多个不同的TPT匹配,以及用0.868分有效检测到AU的恶意软件。除了有效外,RADAR还可以高度地将其安全能力与现有的隐私、高效和综合起来。