Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. This work introduces a novel physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this approach seamlessly integrates the strengths of deep neural networks for rich representation learning, physics embedding, automatic differentiation and sparse regression to (1) approximate the solution of system variables, (2) compute essential derivatives, as well as (3) identify the key derivative terms and parameters that form the structure and explicit expression of the PDEs. The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of PDE systems with different levels of data scarcity and noise accounting for different initial/boundary conditions. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.
翻译:利用数据发现描述复杂物理系统行为的基本管理法或方程式,可以大大推进我们对各种科学和工程学科中此类系统的建模、模拟和理解,这项工作引入了一个新的物理知情深层次学习框架,从非线性微粒时空系统稀缺和吵闹的数据中发现部分差异方程式(PDEs),特别是,这一方法无缝地整合了深层神经网络的长处,以便进行丰富的代表性学习、物理嵌入、自动区分和微弱回归,(1) 接近系统变量的解决方案,(2) 计算基本衍生物,以及(3) 确定构成PDE的结构和明确表达的关键衍生物术语和参数。这一方法的效力和稳健性在数字上和实验上都表现在发现各种PDE系统上,其数据稀缺程度不同,噪音对不同初始/边界条件进行核算。由此形成的计算框架表明,在大型和准确数据集难以捕捉的实际应用中,有可能发现封闭式模型。