Motivated by recent research on Physics-Informed Neural Networks (PINNs), we make the first attempt to introduce the PINNs for numerical simulation of the elliptic Partial Differential Equations (PDEs) on 3D manifolds. PINNs are one of the deep learning-based techniques. Based on the data and physical models, PINNs introduce the standard feedforward neural networks (NNs) to approximate the solutions to the PDE systems. By using automatic differentiation, the PDEs system could be explicitly encoded into NNs and consequently, the sum of mean squared residuals from PDEs could be minimized with respect to the NN parameters. In this study, the residual in the loss function could be constructed validly by using the automatic differentiation because of the relationship between the surface differential operators $\nabla_S/\Delta_S$ and the standard Euclidean differential operators $\nabla/\Delta$. We first consider the unit sphere as surface to investigate the numerical accuracy and convergence of the PINNs with different training example sizes and the depth of the NNs. Another examples are provided with different complex manifolds to verify the robustness of the PINNs.


翻译:根据最近对物理成份神经网络(PINNs)的研究,我们首次尝试采用PINNs, 以对3D 参数进行椭圆部分差异等同(PDEs)的数值模拟。 PINNs是深层次的学习技术之一。根据数据和物理模型,PINNs采用标准进料向神经网络(NNs),以近似PDE系统的解决方案。通过使用自动区分,PDEs系统可以明确地编码成NNWs,因此,PDEs的平均正方形残余的总和可以在NN参数方面最小化。在本研究中,损失函数的剩余部分可以通过使用自动区分法来有效构建,因为表面差分操作商$\nabla_S/\\Delta_S$和标准Euclidean差分解操作商$\nabla/\Delta$。我们首先将单元领域视为调查PINNS的数值准确性和趋同不同培训程度的实例。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
45+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
CVPR 2020 | 用于点云中3D对象检测的图神经网络
学术头条
5+阅读 · 2020年7月29日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
VisualData 公布Matterport 3D重建数据集
AR酱
10+阅读 · 2017年10月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
CVPR 2020 | 用于点云中3D对象检测的图神经网络
学术头条
5+阅读 · 2020年7月29日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
VisualData 公布Matterport 3D重建数据集
AR酱
10+阅读 · 2017年10月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员