Natural question generation (QG) is a challenging yet rewarding task, that aims to generate questions given an input passage and a target answer. Previous works on QG, however, either (i) ignore the rich structure information hidden in the word sequence, (ii) fail to fully exploit the target answer, or (iii) solely rely on cross-entropy loss that leads to issues like exposure bias and evaluation discrepancy between training and testing. To address the above limitations, in this paper, we propose a reinforcement learning (RL) based graph-to-sequence (Graph2Seq) architecture for the QG task. Our model consists of a Graph2Seq generator where a novel bidirectional graph neural network (GNN) based encoder is applied to embed the input passage incorporating the answer information via a simple yet effective Deep Alignment Network, and an evaluator where a mixed objective function combining both cross-entropy loss and RL loss is designed for ensuring the generation of semantically and syntactically valid text. The proposed model is end-to-end trainable, and achieves new state-of-the-art scores and outperforms all previous methods by a great margin on the SQuAD benchmark.


翻译:自然问题生成(QG)是一项具有挑战性但有益的任务,目的是生成有输入通道和目标答案的问题。然而,以前关于 QG 的工作要么(一) 忽略在单词序列中隐藏的丰富的结构信息,要么(二) 没有充分利用目标答案,或者(三) 仅仅依赖导致接触偏差以及培训和测试之间评价差异等问题的交叉热带损失。为了解决上述局限性,我们在本文件中提议为 QG 任务建立一个基于图形到序列(Graph2Seq)的强化学习(RL)结构。我们的模型包括一个图2Seq生成器,在这个模型中,一个基于新颖双向图神经网络(GNN)的编码器用于通过简单而有效的深度对齐网络嵌入输入答案信息,以及一个评价器,其目标功能混杂在一起,将跨种作物损失和RL损失结合起来,以确保生成以语义和方略法为有效的文本。拟议的模型是端到端可训练的,并实现了新的双向图神经神经神经网络(GNN) 的模型,通过一个简单且以前一个基数的基数法将所有基数和基数法用于前基数和基数法。

1
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Image Captioning based on Deep Reinforcement Learning
Paraphrase Generation with Deep Reinforcement Learning
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员