In this paper, an interpretable classifier using an interval type-2 fuzzy neural network for detecting patients suffering from Parkinson's Disease (PD) based on analyzing the gait cycle is presented. The proposed method utilizes clinical features extracted from the vertical Ground Reaction Force (vGRF), measured by 16 wearable sensors placed in the soles of subjects' shoes and learns interpretable fuzzy rules. Therefore, experts can verify the decision made by the proposed method based on investigating the firing strength of interpretable fuzzy rules. Moreover, experts can utilize the extracted fuzzy rules for patient diagnosing or adjust them based on their knowledge. To improve the robustness of the proposed method against uncertainty and noisy sensor measurements, Interval Type-2 Fuzzy Logic is applied. To learn fuzzy rules, two paradigms are proposed: 1- A batch learning approach based on clustering available samples is applied to extract initial fuzzy rules, 2- A complementary online learning is proposed to improve the rule base encountering new labeled samples. The performance of the method is evaluated for classifying patients and healthy subjects in different conditions including the presence of noise or observing new instances. Moreover, the performance of the model is compared to some previous supervised and unsupervised machine learning approaches. The final Accuracy, Precision, Recall, and F1 Score of the proposed method are 88.74%, 89.41%, 95.10%, and 92.16%. Finally, the extracted fuzzy sets for each feature are reported.


翻译:本文介绍了一个可解释的分类器,它使用一种间隔类型-2 模糊神经网络,根据对步态周期的分析,检测患有帕金森病的病人(PD) 。提议的方法使用了从垂直地面反应部队(VGRF)中提取的临床特征,用放置在对象鞋底底部的16个可磨损传感器测量,学习可解释的模糊规则。因此,专家们可以核实根据调查可解释的模糊规则的发射强度的拟议方法所作的决定。此外,专家可以使用提取的模糊规则,根据他们的知识进行诊断或调整。为了提高拟议方法在不确定性和噪音传感器测量方面的稳健性,应用了Interval Type-2 Fuzzy Logic。为了学习模糊规则,提出了两种模式:根据现有样品组合进行批次学习以提取模糊规则,2 - 在线补充学习是为了改进规则基础和新标签样本。 评估了方法的性能,在对病人和健康科目进行分类时,在不同的条件中进行分类和健康特性的特性,包括:准确性、准确性、准确性前的成绩和观察方法。

0
下载
关闭预览

相关内容

【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【综述】智能医疗综述,48页论文详述医学AI最新进展
专知会员服务
69+阅读 · 2019年9月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey on Data Augmentation for Text Classification
Arxiv
14+阅读 · 2020年12月17日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员