Automated generation and (user) authoring of the realistic virtual terrain is most sought for by the multimedia applications like VR models and gaming. The most common representation adopted for terrain is Digital Elevation Model (DEM). Existing terrain authoring and modeling techniques have addressed some of these and can be broadly categorized as: procedural modeling, simulation method, and example-based methods. In this paper, we propose a novel realistic terrain authoring framework powered by a combination of VAE and generative conditional GAN model. Our framework is an example-based method that attempts to overcome the limitations of existing methods by learning a latent space from a real-world terrain dataset. This latent space allows us to generate multiple variants of terrain from a single input as well as interpolate between terrains while keeping the generated terrains close to real-world data distribution. We also developed an interactive tool, that lets the user generate diverse terrains with minimalist inputs. We perform thorough qualitative and quantitative analysis and provide comparisons with other SOTA methods. We intend to release our code/tool to the academic community.
翻译:实际虚拟地形的自动生成和(用户)生成是VR模型和游戏等多媒体应用程序最需要的,对地形最常用的表述是数字升降模型(DEM),现有的地形写作和建模技术已经解决了其中一些问题,可以大致归类为:程序建模、模拟方法和以实例为基础的方法。在本文件中,我们提出了一个新颖的现实地形框架,由VAE和有条件的基因化GAN模型相结合,我们的框架是一种以实例为基础的方法,试图通过从真实世界地形数据集中学习潜在空间来克服现有方法的局限性。这一潜在空间使我们能够从单一输入中产生多种地形变异,并在地形间相互交错,同时将生成的地形与现实世界数据分布相近。我们还开发了一个互动工具,让用户以最小的投入生成不同的地形。我们进行了彻底的定性和定量分析,并与其他SOTA方法进行比较。我们打算向学术界发布我们的代码/工具。