Automated generation and (user) authoring of the realistic virtual terrain is most sought for by the multimedia applications like VR models and gaming. The most common representation adopted for terrain is Digital Elevation Model (DEM). Existing terrain authoring and modeling techniques have addressed some of these and can be broadly categorized as: procedural modeling, simulation method, and example-based methods. In this paper, we propose a novel realistic terrain authoring framework powered by a combination of VAE and generative conditional GAN model. Our framework is an example-based method that attempts to overcome the limitations of existing methods by learning a latent space from a real-world terrain dataset. This latent space allows us to generate multiple variants of terrain from a single input as well as interpolate between terrains while keeping the generated terrains close to real-world data distribution. We also developed an interactive tool, that lets the user generate diverse terrains with minimalist inputs. We perform thorough qualitative and quantitative analysis and provide comparisons with other SOTA methods. We intend to release our code/tool to the academic community.


翻译:实际虚拟地形的自动生成和(用户)生成是VR模型和游戏等多媒体应用程序最需要的,对地形最常用的表述是数字升降模型(DEM),现有的地形写作和建模技术已经解决了其中一些问题,可以大致归类为:程序建模、模拟方法和以实例为基础的方法。在本文件中,我们提出了一个新颖的现实地形框架,由VAE和有条件的基因化GAN模型相结合,我们的框架是一种以实例为基础的方法,试图通过从真实世界地形数据集中学习潜在空间来克服现有方法的局限性。这一潜在空间使我们能够从单一输入中产生多种地形变异,并在地形间相互交错,同时将生成的地形与现实世界数据分布相近。我们还开发了一个互动工具,让用户以最小的投入生成不同的地形。我们进行了彻底的定性和定量分析,并与其他SOTA方法进行比较。我们打算向学术界发布我们的代码/工具。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员