All-or-nothing transforms (AONTs) were originally defined by Rivest as bijections from $s$ input blocks to $s$ output blocks such that no information can be obtained about any input block in the absence of any output block. Numerous generalizations and extensions of all-or-nothing transforms have been discussed in recent years, many of which are motivated by diverse applications in cryptography, information security, secure distributed storage, etc. In particular, $t$-AONTs, in which no information can be obtained about any $t$ input blocks in the absence of any $t$ output blocks, have received considerable study. In this paper, we study three generalizations of AONTs that are motivated by applications due to Pham et al. and Oliveira et al. We term these generalizations rectangular, range, and restricted AONTs. Briefly, in a rectangular AONT, the number of outputs is greater than the number of inputs. A range AONT satisfies the $t$-AONT property for a range of consecutive values of $t$. Finally, in a restricted AONT, the unknown outputs are assumed to occur within a specified set of "secure" output blocks. We study existence and non-existence and provide examples and constructions for these generalizations. We also demonstrate interesting connections with combinatorial structures such as orthogonal arrays, split orthogonal arrays, MDS codes and difference matrices.


翻译:所有或无的变换(AONTs)最初被Rivest定义为从美元输入区块到美元输出区块的分母,因此无法在没有任何产出区块的情况下获得任何输入区块的信息。近年来,讨论过许多全无变换的概括和扩展,其中许多是加密、信息安全、安全分布存储等方面的多种应用驱动的。特别是,美元-AONTs,其中在没有任何美元产出区块的情况下无法获得任何美元输入区块的信息,但没有得到大量研究。在本文件中,我们研究了受Pham et al和Oliveira 等应用驱动的AONTs的三个变换式。我们将这些变换式的概括和扩展称为矩形、范围以及限制的AONTs。简而言之,在矩形的AONT中,产出的数量超过了投入的数量。在没有美元产出区块块的连续值范围内,AONTsaldorial满足了$-AONT的变数。最后,我们将这些变数和变数的图解式图解为:我们所假设的不为普通输出的不为普通输出。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
86+阅读 · 2020年12月5日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2018年5月28日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员