The integrated nested Laplace approximation (INLA) is a well-known and popular technique for spatial modeling with a user-friendly interface in the R-INLA package. Unfortunately, only a certain class of latent Gaussian models are amenable to fitting with INLA. In this paper we describe Template Model Builder (TMB), an existing technique which is well-suited to fitting complex spatio-temporal models. TMB is relatively unknown to the spatial statistics community, but is a highly flexible random effects modeling tool which allows users to define complex random effects models through simple C++ templates. After contrasting the methodology behind TMB with INLA, we provide a large-scale simulation study assessing and comparing R-INLA and TMB for continuous spatial models, fitted via the Stochastic Partial Differential Equations (SPDE) approximation. The results show that the predictive fields from both methods are comparable in most situations even though TMB estimates for fixed or random effects may have slightly larger bias than R-INLA. We also present a smaller discrete spatial simulation study, in which both approaches perform well. We conclude with an analysis of breast cancer incidence and mortality data using a joint model which cannot be fit with INLA.


翻译:综合的巢状拉普尔近似(INLA)是一种众所周知和流行的空间建模技术,在R-INLA套件中使用方便用户的界面进行空间建模。 不幸的是,只有某类潜潜伏高斯模型适合INLA。 在本文中,我们描述了模板模型构建器(TMB),这是一种现有技术,非常适合安装复杂的阵形-时空模型。 空间统计界相对不了解TMB,但是一种非常灵活的随机效应模型工具,使用户能够通过简单的C++模板界定复杂的随机效应模型。在将TMB与INLA后的方法进行比较之后,我们提供了大规模模拟研究,评估和比较R-INLA和TMB的连续空间模型,通过Stochacistic 部分分布器(SPDE)近似近。结果显示,这两种方法的预测场在多数情况下是可比的,即使TMB对固定或随机效应的估计可能比R-INLA的偏差略大一点。我们还提出了一种较小型的离式空间模拟模型,在这种模型中,既采用IMB与INA是无法很好地进行乳腺癌的分析。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
已删除
AI掘金志
7+阅读 · 2019年7月8日
《科学》(20190426出版)一周论文导读
科学网
5+阅读 · 2019年4月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月12日
Arxiv
0+阅读 · 2021年5月11日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
已删除
AI掘金志
7+阅读 · 2019年7月8日
《科学》(20190426出版)一周论文导读
科学网
5+阅读 · 2019年4月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员