This note is meant to provide an introduction to linear models and the theories behind them. Our goal is to give a rigorous introduction to the readers with prior exposure to ordinary least squares. In machine learning, the output is usually a nonlinear function of the input. Deep learning even aims to find a nonlinear dependence with many layers which require a large amount of computation. However, most of these algorithms build upon simple linear models. We then describe linear models from different views and find the properties and theories behind the models. The linear model is the main technique in regression problems and the primary tool for it is the least squares approximation which minimizes a sum of squared errors. This is a natural choice when we're interested in finding the regression function which minimizes the corresponding expected squared error. We first describe ordinary least squares from three different points of view upon which we disturb the model with random noise and Gaussian noise. By Gaussian noise, the model gives rise to the likelihood so that we introduce a maximum likelihood estimator. It also develops some distribution theories for it via this Gaussian disturbance. The distribution theory of least squares will help us answer various questions and introduce related applications. We then prove least squares is the best unbiased linear model in the sense of mean squared error and most importantly, it actually approaches the theoretical limit. We end up with linear models with the Bayesian approach and beyond.


翻译:本说明旨在介绍线性模型及其背后的理论。 我们的目标是对先前接触普通最小正方形的读者进行严格的介绍。 在机器学习中, 输出通常是输入的非线性函数。 深层学习甚至旨在找到非线性依赖性, 多层需要大量计算。 然而, 这些算法大多建立在简单的线性模型上。 我们然后从不同的角度描述线性模型, 并找到模型背后的属性和理论。 线性模型是回归问题中的主要技术, 而对于它来说, 线性模型是最小正方形近似, 以最小的平方差总和。 在机器学习中, 输出通常是一个自然的选择, 当我们有兴趣找到回归函数, 从而尽量减少相应的平方差错误。 我们首先从三个不同的角度描述普通的最小正方形。 我们用随机噪音和高方形的噪音来扰乱模型。 我们用高方形的噪音来推断出可能性, 以便我们引入一个最大可能的估测算器。 它还通过最小的调调度模型来开发一些分配理论理论。 我们用最接近的正方平方的理论性理论性理论来解我们各种问题, 。 我们用最正方的平方的判的判的判的判法 。

0
下载
关闭预览

相关内容

对于给定d个属性描述的示例x=(x1,x2,......,xd),通过属性的线性组合来进行预测。一般的写法如下: f(x)=w'x+b,因此,线性模型具有很好的解释性(understandability,comprehensibility),参数w代表每个属性在回归过程中的重要程度。
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
0+阅读 · 2021年7月1日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员