In extracting time series data from various sources, it is inevitable to compile variables measured at varying frequencies as this is often dependent on the source. Modeling from these data can be facilitated by aggregating high frequency data to match the relatively lower frequencies of the rest of the variables. This however, can easily loss vital information that characterizes the system ought to be modelled. Two semiparametric volatility models are postulated to account for covariates of varying frequencies without aggregation of the data to lower frequencies. First is an extension of the autoregressive integrated moving average with explanatory variable (ARMAX) model, it integrates high frequency data into the mean equation (VF-ARMA). Second is an extension of the Glosten, Jagannathan and Rankle (GJR) model that incorporates the high frequency data into the variance equation (VF-GARCH). In both models, high frequency data was introduced as a nonparametric function in the model. Both models are estimated using a hybrid estimation procedure that benefits from the additive nature of the models. Simulation studies illustrate the advantages of postulated models in terms of predictive ability compared to generalized autoregressive conditionally heteroscedastic (GARCH) and GJR models that simply aggregates high frequency covariates to the same frequency as the output variable. Furthermore, VF-ARMA is superior to VF-GARCH since it exhibits some degree of robustness in a wide range of scenarios.


翻译:在从不同来源提取时间序列数据时,将不同频率测量的变量进行汇编是不可避免的,因为这往往取决于源数。从这些数据中建模可以通过集成高频数据来便利高频数据,以匹配其他变量相对较低频率的频率。然而,这很容易丢失了系统特征的至关重要信息。两个半对称波动模型被假定为计算不同频率的共变数,而没有将数据汇总到较低频率。第一是自动递增综合移动平均值与解释变量(ARMAX)模型的延伸,它将高频数据纳入中位方(VF-ARMA))。第二是Glosten、Jagannathan和Rangle(GJR)模型的延伸,该模型将高频数据纳入差异方程(VF-GRCH)中。在这两种模型中,高频数据被引入为非参数函数函数。两种模型使用混合估计程序,从模型的添加性质中受益。模拟研究模拟表明,后假设模型在预测能力方面优于普遍频率GARC(V-C-C-G-C-C-C-CVC-C-C-C-CR-C-C-C-C-C-CR-C-C-C-C-C-C-C-C-CR-C-C-C-C-C-C-C-C-C-C-C-C-C-I-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-CRE-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员