Often both Aggregate Data (AD) studies and Individual Patient Data (IPD) studies are available for specific treatments. Combining these two sources of data could improve the overall meta-analytic estimates of treatment effects. Moreover, often for some studies with AD, the associated IPD maybe available, albeit at some extra effort or cost to the analyst. We propose a method for combining treatment effects across trials when the response is from the exponential family of distribution and hence a generalized linear model structure can be used. We consider the case when treatment effects are fixed and common across studies. Using the proposed combination method, we evaluate the wisdom of choosing AD when IPD is available by studying the relative efficiency of analyzing all IPD studies versus combining various percentages of AD and IPD studies. For many different models design constraints under which the AD estimators are the IPD estimators, and hence fully efficient, are known. For such models we advocate a selection procedure that chooses AD studies over IPD studies in a manner that force least departure from design constraints and hence ensures a fully efficient combined AD and IPD estimator.


翻译:通常,综合数据(AD)研究和个别病人数据(IPD)研究都可用于具体治疗。这两个数据来源相结合,可以改善对治疗效果的总体元分析估计。此外,对于一些与AD有关的研究,相关的IPD也许可以使用,尽管有些额外努力或分析师的费用。我们建议一种方法,在反应来自指数分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式,因而可以使用一个通用的线性模型结构时,将所有治疗效果固定和常见时的情况结合起来。我们采用拟议的组合方法,通过研究分析所有IDD研究的相对效率,同时结合AD和IDD和IDD研究的多种百分比,来评估在具备IPD时选择A的明智性。对于许多不同的模型设计限制,即AD估计者是IPD估计者,因此是完全有效的。对于这些模型,我们提倡一种选择程序,选择AD研究而不是IDD研究,其方式应尽量避免脱离设计上的制约,从而确保充分有效的ADD和IDD综合估计。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月25日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员