A commonly-cited reason for the poor performance of automatic chord estimation (ACE) systems within music information retrieval (MIR) is that non-chord tones (i.e., notes outside the supporting harmony) contribute to error during the labeling process. Despite the prevalence of machine learning approaches in MIR, there are cases where alternative approaches provide a simpler alternative while allowing for insights into musicological practices. In this project, we present a statistical model for predicting chord tones based on music theory rules. Our model is currently focused on predicting chord tones in classical music, since composition in this style is highly constrained, theoretically making the placement of chord tones highly predictable. Indeed, music theorists have labeling systems for every variety of non-chord tone, primarily classified by the note's metric position and intervals of approach and departure. Using metric position, duration, and melodic intervals as predictors, we build a statistical model for predicting chord tones using the TAVERN dataset. While our probabilistic approach is similar to other efforts in the domain of automatic harmonic analysis, our focus is on melodic reduction rather than predicting harmony. However, we hope to pursue applications for ACE in the future. Finally, we implement our melody reduction model using an existing symbolic visualization tool, to assist with melody reduction and non-chord tone identification for computational musicology researchers and music theorists.


翻译:在音乐信息检索(MIR)中,自动和弦估计(ACE)系统的性能不佳的一个常见原因是,在音乐信息检索(MIR)中,自动和弦估计(ACE)系统的性能不佳,原因是非和弦调调(即支持性和谐之外的注释)导致标签过程中的错误。尽管在MIR中,机器学习方法十分普遍,但有些情况下,替代方法提供了更简单的替代方法,同时允许对音乐学实践的深入了解。在这个项目中,我们提出了一个根据音乐理论规则预测和弦调调的统计模型。我们的模式目前侧重于预测古典音乐中的和弦调调调调,因为这种风格的构成高度受限,理论上使合音调调调调调的放置在理论上具有高度的可预测性。事实上,音乐论者对各种非和弦调调的音调都有标签制度,主要根据说明的衡量立场和时间间隔和偏差加以分类。在使用基准位置、持续时间和中间间距作为预测器时,我们建立了一个统计模型,用来预测合曲调与古典中的其他工作相似,但我们的调调调调调方法用来帮助进行自动和模化,最终预测。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
84+阅读 · 2020年12月5日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Mandoline: Model Evaluation under Distribution Shift
PSD Representations for Effective Probability Models
Arxiv
0+阅读 · 2021年6月30日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员