A commonly-cited reason for the poor performance of automatic chord estimation (ACE) systems within music information retrieval (MIR) is that non-chord tones (i.e., notes outside the supporting harmony) contribute to error during the labeling process. Despite the prevalence of machine learning approaches in MIR, there are cases where alternative approaches provide a simpler alternative while allowing for insights into musicological practices. In this project, we present a statistical model for predicting chord tones based on music theory rules. Our model is currently focused on predicting chord tones in classical music, since composition in this style is highly constrained, theoretically making the placement of chord tones highly predictable. Indeed, music theorists have labeling systems for every variety of non-chord tone, primarily classified by the note's metric position and intervals of approach and departure. Using metric position, duration, and melodic intervals as predictors, we build a statistical model for predicting chord tones using the TAVERN dataset. While our probabilistic approach is similar to other efforts in the domain of automatic harmonic analysis, our focus is on melodic reduction rather than predicting harmony. However, we hope to pursue applications for ACE in the future. Finally, we implement our melody reduction model using an existing symbolic visualization tool, to assist with melody reduction and non-chord tone identification for computational musicology researchers and music theorists.
翻译:在音乐信息检索(MIR)中,自动和弦估计(ACE)系统的性能不佳的一个常见原因是,在音乐信息检索(MIR)中,自动和弦估计(ACE)系统的性能不佳,原因是非和弦调调(即支持性和谐之外的注释)导致标签过程中的错误。尽管在MIR中,机器学习方法十分普遍,但有些情况下,替代方法提供了更简单的替代方法,同时允许对音乐学实践的深入了解。在这个项目中,我们提出了一个根据音乐理论规则预测和弦调调的统计模型。我们的模式目前侧重于预测古典音乐中的和弦调调调调,因为这种风格的构成高度受限,理论上使合音调调调调调的放置在理论上具有高度的可预测性。事实上,音乐论者对各种非和弦调调的音调都有标签制度,主要根据说明的衡量立场和时间间隔和偏差加以分类。在使用基准位置、持续时间和中间间距作为预测器时,我们建立了一个统计模型,用来预测合曲调与古典中的其他工作相似,但我们的调调调调调方法用来帮助进行自动和模化,最终预测。